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Abstract

Motivation: The exploration of metabolic profiles through NMR spectroscopy has been dominated by targeted approaches,
favoured for their specificity and direct relevance to known metabolic pathways. However, the potential of untargeted metabolomics
to uncover novel biomarkers remains largely untapped due to its inherent challenges. These include the presence of noisy features,
high dimensionality, and intercorrelation among features, which conventional analytical methods struggle to adequately address.
The lack of robust analytical frameworks capable of navigating these complexities has hindered the full exploitation of untargeted
metabolomics’ potential to provide comprehensive insights into disease mechanisms and therapeutic targets.
Results: To bridge this gap, we introduce SpectraFlow, an innovative feature selection framework explicitly designed for the
nuanced landscape of untargeted NMR metabolomics data. SpectraFlow excels in isolating noise-free metabolic features from
global spectral data, demonstrating a keen ability to enhance predictive performance while ensuring clinical relevance. Our
findings reveal that SpectraFlow not only corroborates several established biomarkers but also unveils novel metabolic features
with potential implications for understanding and treating Vasoplegia syndrome.
Availability: SpectraFlow is freely available on GitHub at github.com/adigoryl/SpectraFlow.git.
Supplementary materials: Available at Bioinformatics online
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Introduction

Vasoplegia syndrome, a formidable challenge observed post-

cardiac surgery, is characterised by severe vasodilation leading

to hypotension, despite maintaining normal or elevated cardiac

output. This condition is closely associated with significant post-

operative risks, such as multi-organ dysfunction or failure (1) (2)

(3), underscoring the critical need for accurate prediction and early

identification of at-risk patients. Despite its prevalence in nearly

a third of patients undergoing cardiac surgery, the literature on

predictive models for Vasoplegia is notably sparse. Traditional

statistical methods employed in existing studies often fail to achieve

predictive accuracies beyond 80% Area under the ROC Curve

(4) (5), indicating a substantial room for improvement through

advanced modelling techniques.

Metabolomics, utilising Nuclear Magnetic Resonance (NMR)

spectroscopy and Liquid Chromatography–Mass Spectrometry (LC-

MS) analysis, offers profound insights into metabolic processes,

reflecting the organism’s biochemical activity (6) (7) (8) (9). This

field holds promise for early disease diagnosis and the discovery of

new biomarkers. Yet, the inherent complexity of metabolomic

datasets, characterised by high dimensionality and significant

intercorrelation among variables, poses considerable analytical

challenges (10) (6). These challenges necessitate sophisticated

feature selection methods to distil meaningful insights effectively.

Historically, targeted metabolomics has been favoured for its

direct approach and the simplicity of interpreting spectral data

by focusing exclusively on known biomarkers. However, this

method may overlook novel or unidentified features of potential

significance (11) (12). In contrast, untargeted metabolomics

provides a comprehensive view, examining a broad spectrum

of metabolites without bias. Despite its advantages, untargeted

metabolomics grapples with issues such as noise, the curse of

dimensionality, and varied signal intensities, all of which require

precise and robust analytical techniques to overcome (13).

In response to these challenges, we introduce the SpectraFlow

pipeline, a novel feature selection framework designed expressly

for the analysis of untargeted metabolomics data. Applied to

a dataset on Vasoplegia, SpectraFlow aims not only to achieve

superior predictive accuracy compared to traditional and targeted

methods but also to identify novel biomarkers that could inform

better post-surgical outcomes. This study aims to rigorously

evaluate the SpectraFlow pipeline, emphasising its capability to
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handle the complexities of untargeted metabolomics data and to

discover clinically relevant biomarkers. We highlight two main

contributions of this work: firstly, the introduction of SpectraFlow

as an innovative combination of denoising, PCA-binning, advanced

modelling techniques, rank concatenation, and a data-efficient

rank evaluation strategy. This unique combination represents

a significant advancement in the field of metabolomics feature

selection. Secondly, by applying SpectraFlow to the study of post-

operative Vasoplegia, we not only enhance our understanding of

this complex condition but also reveal potential early-detection

biomarkers, thus opening new avenues for disease management and

research. Our findings underscore the transformative potential of

SpectraFlow in metabolomic research, paving the way for novel

insights into disease mechanisms and therapeutic interventions.

Materials and Methods

Dataset
In this study, we analyse findings from two datasets associated with

a cohort of patients undergoing evaluation for Vasoplegia syndrome,

comprising 147 patient samples with 39 positive and 108 negative

cases for Vasoplegia.

The primary dataset, known as the 1D 1H Carr-Purcell

Meiboom-Gill (CPMG) dataset, was generated through NMR

spectroscopy, offering comprehensive metabolic profiles represented

by 18,637 variables for the entire cohort. This broad dataset served

as the foundation for our untargeted analysis approach.

From this extensive dataset, a targeted subset was curated,

focusing on 28 specific metabolic biomarkers identified using Small

Molecule Enhancement Spectroscopy (SMolESY). The methodology

behind the biomarkers’ quantification and their selection criteria

are detailed in (49) (50).

Metabolic phenotyping for both datasets was conducted at The

National Phenome Centre (51), Imperial College, utilising blood

plasma samples collected from patients prior to Left Ventricular

Assist Device (LVAD) implantation, at UMC Utrecht, Netherlands.

The Origin and Challenges of Noise in NMR Data
NMR spectroscopy offers deep insights into molecular structures

and interactions, but it’s not without challenges. Noise in NMR data

originates from various sources, including sample characteristics,

equipment constraints, external interferences, and the random

behaviours intrinsic to molecular processes (14). Even with

meticulous instrument calibration, rigorous sample preparation, and

optimised experimental setups, some noise remains, a consequence

of the inherently stochastic nature of molecular motion.

The intrinsic noise complicates data scaling. However, for the

optimal performance of machine learning models, scaling is essential.

When data is correctly scaled, it ensures that all features adhere to

a uniform scale, mitigating challenges like overfitting and ensuring

each feature is given an equal opportunity during the feature

selection process (15). This uniformity becomes especially vital

in the context of global NMR spectra feature selection. While there

can be significant differences in signal intensities, a feature with a

lower intensity isn’t necessarily less relevant.

Unit variance scaling, among various scaling methods for NMR

data (16) (17) (18), stands out as notably beneficial for machine

learning approaches relying on iterative optimisation methods

like gradient descent. However, when applying scaling techniques,

such as unit variance scaling, to datasets with inherent noise, a

notable risk emerges: the inadvertent amplification of this noise.

Such amplification can lead to the misinterpretation of noise as

authentic data patterns, misleading feature selection processes and

compromising model accuracy.

Given the criticality of data scaling, it’s essential to augment

it with potent noise reduction methods. This combination ensures

that the data remains consistent in feature scales while also staying

true to actual data patterns.

Wavelet Transform: A Solution to NMR Noise
Wavelet transform (WT) (19), a powerful mathematical tool, has

been employed in various fields, ranging from signal processing

to image compression (20). Its ability to decompose signals into

different frequency components makes it particularly useful for

signal compression and noise reduction tasks. Through the Discrete

Wavelet Transform, NMR spectra can be broken down into a series

of coefficients, reflecting its representation in the wavelet domain.

When some of these coefficients have minimal values, they can

be filtered out using thresholding, resulting in denoised data that

maintains the integrity of the original structure (21).

Wavelets have been highlighted in several studies for their

effectiveness in enhancing the clarity of NMR data by improving

the signal-to-noise ratio (22) (23). More recently, WT has been

recognised for its efficiency in removing NMR noise, outperforming

methods such as Singular Value Decomposition and Hankel Matrix

factorisation (24). However, no research has yet explored the

significance of wavelet application as an NMR data preprocessing

step for machine learning and feature selection. This paper seeks

to briefly address that gap. For more details on the specific wavelet

techniques we employed, please refer to Supplementary Material.

Addressing
Dimensionality and Intercorrelation with PCA Binning
Selecting features in high-dimensional NMR datasets is notably

challenging, particularly when the large number of data points

or features greatly exceeds the sample size. This imbalance

significantly increases the risk of overfitting, which can prevent

models from accurately capturing and generalising real data

patterns. A compounding issue is the inherent intercorrelations

within NMR data: closely spaced metabolic features often share

similar information due to the spectral data’s dense structure (25)

(26) (27). This closeness can lead to a higher chance of selecting

metabolites that mirror the same metabolic activities, introducing

redundancy and obscuring the identification of unique and insightful

features. Such redundancy ultimately detracts from the model’s

performance and the precision of biomarker discovery.

To mitigate these issues, Principal Component Analysis (PCA) is

deployed as a sophisticated tool for dimensionality reduction, widely

recognised for its utility in various fields (28). Unlike traditional

applications of PCA that process the dataset as a whole, our

method applies PCA to discretely segmented ppm regions. This

segmentation into bins, followed by PCA application, allows the first

principal component of each bin to serve as a concise representation

of its region, significantly reducing the dataset’s complexity (29).

This approach effectively addresses intercorrelations by ensuring

each bin represented by PCA offers a unique snapshot of the dataset,

thereby enhancing the selection process’s specificity and relevance.

Maintaining a connection to the original ppm regions after

feature selection is crucial for ensuring the interpretability and

scientific validity of the findings. This traceability is essential

for grounding any derived scientific hypotheses firmly within the

dataset’s original structure.

In deduction, PCA binning acts as an efficient preprocessing

strategy that refines NMR datasets for enhanced feature selection.

By tackling dimensionality and intercorrelations, it facilitates a more
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detailed and meaningful analysis, paving the way for deeper insights

into NMR data. Detailed methodology, including the PCA binning

algorithm’s pseudo-code, is provided in Supplementary Material.

Sequential Attention for Robust Feature Selection
Feature selection stands as a pivotal procedure in machine learning

and statistics, aiming to select a subset of k essential features from

a larger pool of d features that maximise a model’s predictive

performance (30). This undertaking becomes more demanding in

biomedical settings. Beyond merely enhancing predictive accuracy,

the selected features should align with practical biomedical

interpretations, as their accurate identification can unveil insights

into disease progression or potentially pave breakthroughs in drug

discovery.

Historically, techniques such as Support Vector Machines,

Decision Trees, Random Forests, and gradient-boosted models

have led the charge in feature selection (31). While these methods

have consistently demonstrated their reliability, the advancements

in deep learning introduce potential avenues for refining feature

selection through more complex data representations.

One noteworthy method within deep learning is the attention

mechanism, which has revolutionised the computer vision and

natural language processing domain (32). Its unique capability

allows it to dynamically assign degrees of importance to contrast

features, enabling models to “focus” on essential data points.

Nevertheless, when deploying attention for feature selection,

complexities emerge. Traditional attention mechanisms can overlook

the marginal contributions a feature offers given the presence of

other already selected features. The omission of these residual values

can inadvertently lead to the selection of redundant features or

potentially overlooking valuable synergies (33).

To address these challenges, we adopt the “Sequential

Attention”1 algorithm in our pipeline (33). The Sequential Attention

algorithm ingeniously merges the strengths of the greedy forward

selection method with the efficiency of deep learning. Traditional

greedy forward selection, while thorough in assessing each feature’s

impact, is computationally demanding due to the need to train

a model for each feature combination. This approach becomes

inefficient, especially when dealing with a large number of features.

Building on the foundational concept of attention, the Sequential

Attention mechanism provides a nuanced approach to feature

selection. Unlike standard attention mechanisms that may allocate

significance broadly across features, Sequential Attention employs

a systematic process to iteratively discern and prioritise. Beginning

with initial importance scores assigned to each feature, these scores

undergo periodic adjustments as training advances. At specified

intervals, features with the highest scores are locked in, and their

scores are subsequently reset. This iterative process ensures that,

over time, a refined subset of features emerges, each having proven

its significance. This iterative approach mirrors the granularity of

greedy forward selection but achieves it more efficiently, without

the need for repeated model training sessions.

Furthermore, the design of the Sequential Attention algorithm

ensures differentiability, facilitating smooth gradient-based

optimisation. This versatility allows it to be integrated seamlessly

as a component within larger models, including various neural

network layers. When incorporated into models, this refined feature

set becomes instrumental in driving accurate predictions and, thus,

provides a potent and streamlined method for feature selection

suitable for biomedical applications.

1 We modified the original Sequential Attention algorithm to

maintain the order in which features are selected.

SpectraFlow: Approach for Global NMR Feature Selection
The analysis and interpretation of global NMR data require

robust preprocessing and feature selection strategies. Our pipeline

synergistically combines denoising, PCA-binning, sequential

attention, and an MLP model to address challenges specific to

NMR data.

Denoising

Noise is an inherent aspect of 1D 1H CPMG NMR spectra and can

significantly influence downstream analyses. For a given spectra

represented as Sraw(p), where p denotes the chemical shift, denoising

becomes essential to ensure data quality. The goal is to extract the

inherent true signal S(p) from the raw data. This is mathematically

captured as:

Sraw(p)=S(p)+N(p) (1)

In this equation, N(p) denotes the noise component, and our

denoised signal, after processing, closely approximates:

Sdenoised(p)≈S(p) (2)

PCA-binning

After denoising, the next goal is to optimise the data’s structure

for more productive feature selection modelling. For this purpose,

we employ the PCA-binning method, as detailed below:

• Let us represent each subject’s global spectra as a sequence of

values:

X(i)=[v1,v2,...,vN ] (3)

where N signifies the total number of spectral points.

• Instead of considering each spectral point individually, we group

them into bins according to the ppm regions. If we take a step

size of 0.005 ppm and an overlap of 0.0025 ppm, we generate

bins Bj where each Bj contains a subset of values sourced from

X(i), based on their ppm range.

• Every bin then goes through a PCA transformation. The first

principal component obtained from the PCA captures the most

variance and hence represents the entire bin. This process yields

a new array of values for each subject, given as

Z(i)=[P(B1),P(B2),...,P(BK)] (4)

where K stands for the number of constructed bins and

P(Bj) is the score of the first principal component for bin Bj.

By employing this PCA-binning strategy, we not only decrease

the complexity of the dataset but also secure a representation

that captures the most critical information of each ppm

region.

Sequential Attention

Upon obtaining the binned PCA features symbolised by Z(i),

it’s vital to discern and emphasise the most informative bins.

The sequential attention mechanism serves this exact purpose by

attributing dynamic weights to these binned features:

A=Softmax(WaZ(i)+ba) (5)

Where:

• Wa and ba denote trainable weights and biases of the attention

layer, respectively.
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Fig. 1. An abstract representation of the SpectraFlow pipeline. On the left-hand side, the feature selection framework is detailed, and on the right-hand side, the

evaluation of the Unified Ranking derived from Cross-Validation is presented.
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• A represents the attention-weighted array.

The interaction between the weighted bins and the original binned

features is described as:

Zattended=A⊙Z(i) (6)

Multilayer Perceptron (MLP)

The MLP is the backbone of our pipeline, effectively integrating and

learning from the feature representations produced by the sequential

attention mechanism. Each layer undergoes linear transformations

and non-linear activations, successively transforming the attention-

weighted features:

Z1=ZattendedW1+b1 (7)

H1=Activation(Z1) (8)

.

.

. (9)

Zn=Hn−1Wn+bn (10)

Hn=Activation(Zn) (11)

During training, the model utilises gradient descent to iteratively

adjust its weights. Given a batch size of m, the weight update is

mathematically expressed as:

Wnew=Wold−
α

m

m∑
i=1

∇WLi (12)

Where α represents the learning rate. The combination of sequential

attention and MLP ensures the optimal selection and interpretation

of NMR features, capturing the underlying complexities of the

dataset.

Feature Rank Aggregation
Given a dataset withX features, the algorithmic pipeline is designed

to select a subset of the top S features. Here, S is an externally

defined parameter.

For a cross-validation scheme with C folds, repeated R times,

the pipeline produces C×R distinct feature rankings, each of size S.

The inherent variability in training samples across different

cross-validation folds, particularly pronounced in untargeted NMR

datasets with a high feature-to-sample ratio, produces rankings that

exhibit both consistency and variance. This mixture indicates some

features’ recurrent presence, while others differ across rankings.

This variance underscores the necessity for an aggregated

ranking approach capable of merging these diverse outcomes into

a singular, unified ranking. We implement the following steps:

• Extraction of Unique Features: Initially, we gather all unique

features from the C×R distinct rankings, forming a set U. The

size of U, denoted as |U|, could theoretically reach S×C×R,

but typically, it’s less due to the overlap of features across

different rankings.

• Frequency-based Selection:

Next, we calculate the occurrence frequency f(Fi) for each

feature Fi in the set U across all C×R rankings. The frequency

is given by the sum of appearances of Fi in each ranking Rj:

f(Fi)=

C×R∑
j=1

I(Fi∈Rj) (13)

Here, I is the indicator function that returns 1 if Fi is present

in the ranking Rj, and 0 otherwise. Based on these frequencies,

we select the top S features that appear most frequently across

the rankings.

• Average Position Ordering:

For these top S features, we calculate their average position

p(Fi) from the rankings where they are present:

p(Fi)=
1

f(Fi)

∑
{j:Fi∈Rj}

P(Fi,Rj) (14)

In this formula, P(Fi,Rj) is the position of feature Fi in

ranking Rj, and the summation runs over all j indices where Fi

is included in Rj. The selected features are then ordered based

on their average positions to finalise the aggregated ranking.

This streamlined approach ensures a more accurate and

representative ranking of features, effectively capturing both the

frequency of occurrence and the average positioning of features

across multiple folds of cross-validation. Let’s denote the unified

ranking as Ru.

Unified Ranking and Evaluation Framework
Regardless of the specific task or dataset in consideration, a

consistent evaluation framework is employed. We utilise a 10-fold

cross-validation (CV) strategy, repeated 10 times. Each fold is

stratified to maintain the balance between class labels. Prior to

each repetition, the dataset undergoes a shuffle, followed by the

generation of data folds. This scheme lays the foundation for our

metabolite or ppm region selection analysis.

For every iteration of this setup, the SpectraFlow pipeline trains

on n− i folds, while the performance of the produced feature

ranking is gauged using the test i fold, where n stands for all CV

folds. As a direct consequence, executing a 10-fold CV, reiterated

10 times, generates 100 distinct feature rankings. Each of these

rankings corresponds to a specific training partition within the

overarching scheme.

With the primary aim of generating a singular, consolidated

ranking from these 100, we employ the ranking concatenation

method, as detailed in Section 2.7, resulting in a unified ranking,

denoted as Ru. The performance and validity of Ru are then

estimated using the Leave-One-Out Recursive Feature Elimination

(LOO-RFE) methodology.

LOO-RFE

The Leave-One-Out method systematically evaluates feature

relevance by training an MLP model on the dataset while excluding

the data of the currently evaluated patient. This ensures each

patient is individually tested once, with the rest of the dataset

used for training. To prevent data contamination or leakage, for

the patient under evaluation, we specifically extract rankings from

cross-validation phases where this patient’s data were not included

in the training set. Such precautions ensure that no evaluation data

samples were involved in generating these rankings, maintaining

the integrity and unbiased nature of our evaluation. Subsequently,

these rankings are aggregated to form a patient-specific unified

ranking, Rint(p), defined as:

Rint(p)=

C×R⋃
k=1

Rk(p) (15)

where Rint(p) represents this integrated ranking for patient

p, aggregating the rankings Rk(p) from each kth iteration that

excluded patient p’s data.

The Recursive Feature Elimination process initiates with the

entire set of S top features, as determined by the Rint(p), for model
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training. In each iteration of the LOO-RFE, the feature assessed

as the least impactful—positioned at the bottom of the integrated

ranking—is removed. This iterative elimination progresses from the

bottom up, excluding features one at a time based on their order of

significance within the integrated ranking, until only two features

remain. Mathematically, this can be depicted as:

Reval(p,t)=Racc(p)−{Fbottom(t)} (16)

Where:

• Reval(p,t) stands for the feature set relevant to patient p at

iteration t.

• Fbottom(t) signifies the bottom-ranked or least impactful feature

during the tth iteration.

As the iterative elimination progresses, the model’s performance

is assessed at each step. Once all features have been evaluated

for all patients, the outcomes are averaged, providing a holistic

LOO-RFE evaluation. This aggregated evaluation is defined as:

ELOO-RFE=
1

|P |

|P|∑
p=1

Performance(Reval(p,t)) (17)

Where:

• |P | is the total count of patients.

• The “Performance” function quantifies the model’s performance

using the designated feature set.

Our decision to employ the Leave-One-Out Recursive Feature

Elimination (LOO-RFE) methodology was strategically informed

by the constrained sample size of our dataset. A conventional

three-way data split would significantly diminish the effectiveness

of feature selection due to the reduced data volume. The central

objective of LOO-RFE within our study is to rigorously evaluate the

performance of the unified feature ranking, denoted as Ru, under

the challenging condition of having no separate validation dataset

available. This approach facilitates an accurate estimation of the

feature selection’s efficacy in a manner that remains unbiased and

robust against overfitting, which is critical in studies with limited

data samples. For a detailed exposition of the rationale behind

choosing LOO-RFE, including its methodological underpinnings and

its advantage in ensuring the integrity of our findings, we encourage

readers to consult the supplementary material provided. This

expanded justification underscores our methodological rigor and

the adaptability of LOO-RFE in addressing the unique challenges

presented by our dataset, thus ensuring the reliability of our feature

selection process.

Results & Discussion

In this section, we conduct a detailed examination of the

SpectraFlow pipeline—a comprehensive collection of algorithms

fine-tuned for precise feature selection—highlighting its potential

to uncover findings of clinical significance.

We start by assessing the pivotal functions of Denoising and

PCA-Binning in enhancing the pipeline’s precision in identifying

metabolically significant features from the intricacies of NMR

spectra. This phase of analysis not only illustrates the value these

preprocessing steps add to the overall model accuracy but also

prepares the ground for a deeper investigation into the spectral

regions SpectraFlow prioritises.

As we proceed, our focus shifts to a thorough validation of

these pivotal spectral regions. This step confirms their significance

as markers with potential relevance to Vasoplegia, ensuring that

the identified features not only boost the performance of the

predictive model but are also meaningful in a clinical context.

By systematically validating both the preprocessing mechanisms

and the significance of the resultant feature selection, we aim to

demonstrate SpectraFlow’s effectiveness in pinpointing clinically

relevant metabolic predictors.

Impact of Denoising and PCA-Binning
This experiment investigates the influence of incorporating

Denoising and PCA-Binning into the SpectraFlow analytical

process, as detailed in Section 2.6. Our findings, summarised in

Table 1, highlight the pivotal role of these preprocessing steps in

enhancing the model’s overall efficacy and ensuring the selection

of noise-free features.

De PCA-B AUC F1 Recall Feature Selection

✓ ✓ 0.911 0.767 0.717 Noise-free

✓ - 0.885 0.686 0.615 Some noisy features

- ✓ 0.909 0.676 0.585 Mostly noisy features

- - 0.841 0.605 0.561 Mostly noisy features

Table 1. The impact of Denoising (DE) and PCA-Binning (PCA-B) on

SpectraFlow performance. Performance metrics are based on the most

optimal models derived from LOO-RFE, with the number of optimal

training features ranging from 24 to 26. For the visual representation of

the selected spectra regions, refer to the Supplementary material.

The data unequivocally show that integrating both Denoising

and PCA-Binning significantly boosts model performance, leading

to the selection of clean, noise-free features. Omitting the Denoising

step markedly diminishes performance across all evaluated metrics,

and negatively impacts the quality of feature selection. This is

evidenced by the inclusion of noisy features within the top 50

selected features, as determined through manual inspection (refer

to the Supplementary material for details on selected spectra

regions for each experimental iteration). Additionally, employing

SpectraFlow with only PCA-Binning as a preprocessing step not

only reduces the model’s performance relative to the baseline but

also degrades the quality of feature selection, predominantly picking

features from noisy regions of the spectra.

The absence of both PCA-Binning and Denoising from the

SpectraFlow pipeline results in the lowest model performance,

coupled with poor feature selection quality. This finding underscores

the critical nature of the Denoising step in achieving noise-free

feature selection. This is attributed to the fact that Denoising

prevents noisy features from being amplified during data scaling,

ensuring they are not mistaken for genuine features. Moreover, PCA-

Binning’s role in reducing the dimensionality of the data space is also

highlighted. This reduction aids the model in better generalising the

true underlying patterns, thereby enhancing predictive performance.

Untargeted: PPM Region Feature Selection
Starting with the original global NMR dataset, which has a

resolution of 18,637, we implemented a series of preprocessing

steps. Initially, denoising techniques were applied, followed by PCA

binning. This process streamlined the dataset, reducing it to 4,095

features. With the modified dataset in place, we further adjusted

the hyperparameters of our pipeline to select 50 ppm regions, which

correspond to PCA-binned regions of interest. A comprehensive
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listing of these regions, along with their selection frequencies, is

presented in Figure 2.

Fig. 2. Unified feature ranking representation of the top 50 ppm regions as

selected by SpectraFlow. The ppm regions are arranged vertically with the

most significant feature at the top and the least significant at the bottom.

The horizontal blue bars indicate the interquartile positions of each ppm

region, with the length of the bar representing the spread across respective

cross-validation fold rankings. The term ‘frq’ denotes the count of rankings

contributing to the interquartile position of a specific ppm region. For a

comprehensive understanding, refer to Section 2.7.

To assess the efficacy of the selected ppm regions, we employed

the LOO-RFE evaluation framework. This method helped identify

the optimal number of features from the unified ranking that

maximised prediction accuracy. Interestingly, performance peaked

at 24 top features, wherein we achieved an F1 score of 77% and an

ROC AUC of 91%. Table 2 expands on the performance metrics,

and the entire LOO-RFE performance is summarised in Figure 3.

A crucial aspect of validating the robustness of our method

involves discerning whether the selected ppm regions align with

actual metabolic features as opposed to noisy areas. Given the

expansive nature of the untargeted dataset, there’s an inherent

likelihood that some of the selected features might not align with

the defined metabolite concentrations, such as those present in the

F1 ROC AUC P. Prec. P. Rec. N. Prec. N. Rec.

0.767 0.911 0.823 0.717 0.897 0.941

Table 2. Efficacy of the top 24 selected metabolic features derived from

the untargeted dataset using SpectraFlow.

Fig. 3. The figure presents a visual representation of the LOO-RFE evaluation

of the top 50 selected PPM regions (Unified ranking) from the targeted dataset

by SpectraFlow. The Jaccard similarity quantifies the consistency among

feature rankings obtained from each cross-validation fold. The figure presents

a visual representation of positive recall, positive precision, negative recall,

and negative precision metrics.

targeted dataset. Furthermore, a single metabolic concentration

can be represented by multiple ppm peak regions. As such,

the expectation for the algorithm to consistently pinpoint all

relevant regions associated with a known metabolite is indeed

demanding. Consequently, for the top 24 ppm regions, we engaged a

spectroscopist to inspect and assign metabolic labels to the selected

regions. The assignments can be viewed in Table 3, showcasing that

nearly all regions correspond to a valuable metabolic feature.

Metabolic Predictors for Vasoplegia
To enhance our understanding of the metabolic predictors associated

with Vasoplegia, we embarked on an analysis of the top 24 ppm

regions, as identified by SpectraFlow for their collective predictive

efficacy. Each region was subjected to a univariate ANOVA test to

independently assess its predictive power for Vasoplegia, revealing

several regions with significant p-values below 0.05.

These analyses highlighted Creatinine, Dimethyl-sulfone,

Histidine, and 3-hydroxybutyrate as key biomarkers for Vasoplegia.

It is important to note that not every region demonstrated statistical

significance on an individual basis. Nonetheless, regions without

significant p-values contribute to the collective predictive capability

of the model, enhancing the differentiation of post-operative

Vasoplegia cases and thus should not be disregarded in future work.

Additionally, we expanded our analysis to a targeted dataset,

implementing both a partial SpectraFlow approach and PLS-

DA, a state-of-the-art method in metabolome analysis. This

comprehensive exploration, detailed in the Supplementary Material,

consistently identified Lysine, Phenylalanine, and Tyrosine as

significant metabolites across both targeted and untargeted selection

methods. Consequently, we explore the clinical significance of

these metabolites, alongside those listed in Table 4, to assess their

implications for Vasoplegia, informed by current literature. This

integrated approach not only validates the SpectraFlow algorithm’s
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PPM Range Identified Metabolite

4.0548-4.0504 Creatinine (-CH2)

4.0574-4.0526 Creatinine (-CH2)

7.7674-7.763 Tryptophane (very low concentration)

3.6796-3.6752 Glycerol

3.8072-3.8028 Glucose

0.9746-0.9702 Leucine

1.1523-1.1479 Propylene glycol

2.2347-2.2303 Unsuppressed macromolecules

6.8747-6.8703 Tyrosine

4.0498-4.0454 Creatinine (-CH2)

3.3623-3.3579 Methanol

2.3772-2.3728 3-hydroxybutyrate

7.3846-7.3802 Phenylalanine

2.9145-2.9101 N-dimethylglycine

3.1571-3.1527 Dimethyl-sulfone

7.3824-7.378 Phenylalanine

6.872-6.8676 Tyrosine

2.892-2.8876 Unknown

7.1822-7.1778 Tyrosine

7.7647-7.7603 Tryptophane (very low concentration)

3.1148-3.1104 Unknown

3.117-3.1126 Unknown

4.1774-4.173 3-hydroxybutyrate

3.0422-3.0378 Lysine

Table 3. Metabolite assignments for the top 24 ppm regions derived

from untargeted analysis with SpectraFlow. The selection of these

24 regions was influenced by the LOO-RFE criterion, optimising

prediction performance. The metabolite assignments were performed by

a spectroscopist, utilising a thorough examination of the full-resolution

spectra and database matching. The italic font underlines the identified

metabolic features that were not a part of the targeted dataset (See

Supplementary Material for analysis on Targeted dataset).

PPM region Label p-value

3.1549-3.1505 Dimethyl-sulfone 0.021146

3.1571-3.1527 Dimethyl-sulfone 0.03644

4.0471-4.0427 Creatinine 0.010679

4.0498-4.0454 Creatinine 0.00040217

4.1774-4.1730 3-hydroxybutyrate 0.033959

7.7647-7.7603 Histidine 0.022911

7.7625-7.7575 Histidine 0.050899

Table 4. Metabolic Predictors with Significant p-values

predictive precision further but also advances our understanding

of Vasoplegia’s metabolic underpinnings.

Clinical Implications
This investigation into Vasoplegia unveils key metabolic markers

from blood samples taken prior to the LVAD implantation in

patients, providing a vital glimpse into their metabolic health

before undergoing a significant medical intervention. The metabolic

features identified herein could serve as potential early indicators

or even preventive markers for Vasoplegia.

Creatinine, a byproduct of muscle metabolism, serves as a

widely recognised marker for renal function. The elevated levels

of creatinine associated with Vasoplegia in our study align with

existing literature, hinting at a potential renal dysfunction or an

increased susceptibility to Vasoplegia post-surgery (34) (35) (5) (36).

Dimethyl-sulfone, an organic sulfur compound known for its

anti-inflammatory properties, is also implicated in renal dysfunction

assessment. Although not directly linked to Vasoplegia, its role

in renal health suggests a possible connection warranting further

exploration (37).

Histidine, an essential amino acid with roles in proton buffering,

metal ion chelation, and erythropoiesis, presents another area of

interest. While the direct relationship with Vasoplegia remains

uncharted, its physiological roles suggest a potential relevance (38)

(39).

3-hydroxybutyrate, a ketone body generated during fatty

acid oxidation, acts as an energy source in carbohydrate deficit

conditions. Its identification may indicate a metabolic shift towards

fat oxidation in Vasoplegia patients, especially under stress or

catabolic states (40) (41) (42) (43).

Lysine, essential for protein synthesis, collagen formation, and

fatty acid metabolism, may have an indirect correlation with

Vasoplegia through its involvement in cardiovascular and renal

health, although a direct correlation remains to be established (44).

Phenylalanine, pivotal in neurotransmitter synthesis, has its

dysregulated catabolism implicated in myocardial senescence,

hinting at possible cardiovascular implications relevant to Vasoplegia

(45).

Tyrosine, a precursor to neurotransmitters like dopamine and

norepinephrine, could influence vascular tone and blood pressure

regulation—core components in Vasoplegia pathology (46) (47) (48).

The interplay among these metabolites primarily highlights

the renal, cardiovascular, and metabolic health dimensions. The

renal dysfunction, as indicated by creatinine and dimethyl-sulfone,

alongside the cardiovascular implications from phenylalanine and

lysine, may intersect with Vasoplegia’s pathophysiology. Moreover,

the metabolic shifts potentially signaled by 3-hydroxybutyrate

could reflect underlying stress or catabolic states in Vasoplegia

patients. This complex metabolic landscape underpins Vasoplegia,

advocating for a comprehensive approach in future research to

decode Vasoplegia’s aetiology and devise prophylactic or therapeutic

strategies.

Conclusion

In our pursuit to identify metabolic biomarkers predictive of

Vasoplegia syndrome, we initiated our research by developing

SpectraFlow. This algorithm is specifically designed to address

the inherent challenges of untargeted NMR datasets, namely

noise, complex intercorrelation, and the curse of dimensionality.

Recognising the essentiality of overcoming these challenges

for accurate feature selection, we structured our solution

into a systematic pipeline. Through rigorous experiments, we

demonstrated not only the robustness and efficacy of our method

in terms of predictive performance but also its ability to reliably

identify noise-free valid ppm regions that correlate with authentic

metabolic features upon spectroscopic verification. Based on our

comprehensive analysis, we have identified a set of metabolic

features that serve as potential biomarkers. We further discuss

the clinical implications of these identified metabolic features and

suggest future research directions to extend this work.
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Experimental Evidence

Untargeted Analysis

Fig. 4. The figure presents a visual representation of the LOO-RFE (Leave-One-Out Recursive Feature Elimination) evaluation of the top 50 selected PPM

regions (Unified ranking) by SpectraFlow. Incorporated within is the average Jaccard similarity, a metric indicating the consistency of feature selection across

each cross-valuation fold. Its value ranges from 0 (no shared features) to 1 (identical feature lists), with higher values denoting greater similarity. The top figure

corresponds to AUC ROC, while the bottom figure reflects F1 prediction accuracy.
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Targeted Analysis
From the CPMG dataset - as detailed in the original publication - a targeted subset was curated, focusing on 28 specific metabolic

biomarkers identified using Small Molecule Enhancement Spectroscopy (SMolESY). The methodology behind the biomarkers’ quantification

and their selection criteria are detailed in (49) (50).

SpectraFlow Approach

In our quest to address the intricacies of untargeted NMR datasets, we developed SpectraFlow. However, for the scope of this analysis,

we adapted segments of the pipeline to derive a biomarker ranking for the targeted dataset. This dataset comprised known metabolites,

quantified by a spectroscopist. Notably, given that this dataset doesn’t display noise or issues of high-dimensionality, we skipped the

denoising and PCA binning stages. Instead, we incorporated sequential attention in combination with the LOO-RFE for the purpose

of biomarker selection and performance evaluation.

Upon analysis, several biomarkers consistently emerged in the top 8 rankings. These included Creatinine, Creatine, Isoleucine, Lysine,

Phenylalanine, Acetone, Tyrosine, and Formic Acid. Among them, Creatinine and Creatine were particularly prominent (see Fig. 5).

Fig. 5. Unified feature ranking representation of the top 9 metabolic features as selected by the partial implementation of the SpectraFlow model. The features

are arranged vertically with the most significant feature at the top and the least significant at the bottom. The horizontal blue bars indicate the interquartile

positions of each feature, with the length of the bar representing the spread across respective cross-validation fold rankings. The term ‘frq’ denotes the count of

rankings contributing to the interquartile rank position of the specific metabolic features. For a comprehensive understanding, refer to Section 2.7.

A deeper dive into the results reveals that the model’s predictions, when pinpointing positive cases, are robust and dependable (as

evidenced by the high positive precision). However, the model has a shortcoming in its limited ability to detect all positive instances,

as evidenced by the low positive recall. The commendable ROC AUC score suggests that with recalibration of the decision threshold,

there’s potential for significant enhancement in recall.
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F1 ROC AUC P. Prec. P. Rec. N. Prec. N. Rec.

0.656 0.872 0.909 0.513 0.84 0.98

Table 5. Efficacy of top 8 selected metabolic features derived from the targeted dataset using SpectraFlow.

Fig. 6. The figure depicts the LOO-RFE assessment of the top 9 metabolic features (Unified ranking) from the targeted dataset using the SpectraFlow model.

The Jaccard similarity quantifies the consistency among feature rankings obtained from each cross-validation fold. The left figure highlights AUC ROC, while the

right focuses on F1 prediction accuracy.

Fig. 7. The figure depicts the LOO-RFE assessment of the top 9 metabolic features (Unified ranking) from the targeted dataset using the SpectraFlow pipeline.

The Jaccard similarity quantifies the consistency among feature rankings obtained from each cross-validation fold. The figure presents a visual representation of

positive recall, positive precision, negative recall, and negative precision metrics.

To provide context and a comparative perspective, we juxtaposed the results obtained from our methodology against those derived

from the widely-adopted Partial Least Squares Discriminant Analysis (PLS-DA).

PLS-DA approach

The PLS-DA analysis commenced with the objective of determining the optimal number of components that would maximise data variance

and AUC. This evaluation was carried out employing a 10-fold cross-validation, reiterated 10 times. Visualisation of the subjects was

facilitated through PCA, enabling us to pinpoint and subsequently exclude outliers. Following the exclusion of outliers, we reiterated the
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search for the optimal components. A manual experimentation phase followed, during which various outlier groups were eliminated, all

with the aim of identifying the optimal configuration. All analyses were standardised using unit variance scaling.

(a) ROC AUC performance of the initial optimal component search.

(b) ROC AUC performance of the optimal component search after

outlier exclusion.

(c) Initial PCA for outlier identification. (d) PCA after excluding subjects referenced as 25, 29, 60, 77, 92.

Fig. 8. The figure illustrates the initial steps in PLS-DA, emphasising the determination of the optimal number of components and the exclusion of outliers.

Upon the finalisation of outliers’ removal and having settled on the optimal components, PLS was executed, yielding a mean AUC

of 68.4%. To fortify the validity of this performance metric, we undertook 1000 permutation tests. Within these tests, class labels were

randomised, followed by the retraining of the PLS model using each permutation and the consequent computation of its performance.

This procedure facilitated the calculation of the p-value linked to achieving the aforementioned 68.4% score with randomised labels. A

p-value of 0.008 was derived, cementing the statistical significance of the score.
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(a) ROC Curve for the Optimal PLS-DA Model. Mean ROC AUC

across cross-validation is noted at 0.6842, though it may not be

distinctly evident in the illustration.

(b) Distribution of ROC AUC scores over 1,000 repetitions with

randomised class labels. The dotted vertical line represents the

accuracy from the adjacent figure. A p-value of 0.008 suggests a

significant difference in our model’s AUC from random expectations.

Fig. 9. Performance of the PLS-DA model complemented by validation through the permutation randomisation test.

Post the PLS model training and validation, we proceeded to extract metabolites of statistical significance, relying on regression

coefficients in tandem with the weights of the first component. Features that surpassed the significance threshold, set at a p-value of 10%,

encompassed Creatine, Creatinine, Acetone, Phenylalanine, and Lysine. These are summarised in Table 6

Parameter p-value threshold Statistically Significant Features

Regression Coefficient 0.025 Creatinine, Acetone, Phenylalanine

Regression Coefficient 0.05 Creatinine, Acetone, Phenylalanine, Lysine

Regression Coefficient 0.1 Creatine, Creatinine, Acetone, Phenylalanine, Lysine

Regression Coefficient 0.15 Isoleucine, Valine, Glycine, Creatine, Creatinine, Dimethyl sulfone

Regression Coefficient 0.2 Isoleucine, Valine, Glycine, Creatine, Creatinine, Formic acid, ...

... Dimethyl sulfone, Acetone, Phenylalanine, Lysine, Succinic acid

Weights 0.025 Creatinine

Weights 0.05 Creatinine, Phenylalanine, Lysine

Weights 0.1 Creatinine, Phenylalanine, Lysine

Weights 0.15 Creatinine, Phenylalanine, Lysine, Dimethylamine

Weights 0.2 Creatine, Creatinine, Citric acid, Phenylalanine, Lysine, Dimethylamine

Table 6. Metabolic features associated with Vasoplegia based on PLS-DA analysis

Comparison of Feature Selection Across Models
The predictive model derived from SpectraFlow has demonstrated superior performance. However, comparing it directly with PLS-DA

is challenging due to the fundamentally different spectrum of techniques each employs. Despite this, we observed that features consistently

ranked at the top by both methods bear a strong resemblance, suggesting they may represent reference metabolites. Consequently, we

use these metabolites as a benchmark to evaluate whether SpectraFlow, when applied to a global spectrum, identifies ppm regions that,

after labeling, correspond to metabolites showing overlap with those identified by both PLS-DA and SpectraFlow in the targeted dataset.
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Fig. 10. Summary of metabolic features chosen using various methods. Please note that the features from SpectraFlow relate to specific ppm regions that have

been identified and labeled.

Upon in-depth analysis of feature selections from both the targeted and untargeted NMR datasets, we identified significant metabolic

overlaps. Among the top selections, metabolites such as Creatinine, Lysine, Phenylalanine, and Tyrosine were consistently highlighted in

both datasets. These overlapping findings further attest to the robustness of our proposed pipeline. Despite the vastness of the global NMR

dataset, with its inherently larger pool of potential features, the pipeline reliably identified regions consistent with the targeted dataset.

Moreover, the untargeted approach notably identified Propylene Glycol, Tryptophan, Methanol, and N-dimethylglycine, which were

not included in the targeted dataset. Without the untargeted feature selection approach, these significant compounds would have been

overlooked. This highlights the pivotal role of untargeted feature selection in achieving a more comprehensive feature identification.

PPM values with Significant p-values
After selecting the top ppm regions, we conducted an ANOVA test on the top 24 regions to identify features that are significant in

independently differentiating the Vasoplegia classes. For regions with a p-value less than 0.05, a spectroscopist meticulously examined

the high-resolution spectra to quantify these ppm regions as metabolites.
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(a) Assigned label: Creatinine.

(b) ppm region 4.0471-4.0427, p=0.010679 (c) ppm region 4.0498-4.0454, p=0.00040217

Fig. 11. Highlighted spectra region illustrating variance between subjects with and without Vasoplegia. The selected region of interest is based on feature

selection from the untargeted dataset in SpectraFlow. The provided p-values are derived from ANOVA, indicating the independent significance of the region.
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(a) Assigned label: Dimethyl-sulfone.

(b) ppm region 3.1571-3.1527, p=0.03644 (c) ppm region 3.1549-4.1505, p=0.021146

Fig. 12. Highlighted spectra region illustrating variance between subjects with and without Vasoplegia. The selected region of interest is based on feature

selection from the untargeted dataset in SpectraFlow. The provided p-values are derived from ANOVA, indicating the independent significance of the region.
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(a) Assigned label: 3-hydroxybutyrate.

(b) ppm region 4.1774-4.173, p=0.033959

Fig. 13. Highlighted spectra region illustrating variance between subjects with and without Vasoplegia. The selected region of interest is based on feature

selection from the untargeted dataset in SpectraFlow. The provided p-values are derived from ANOVA, indicating the independent significance of the region.
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(a) Assigned label: Histidine.

(b) ppm region 7.7647-7.7603, p=0.022911 (c) ppm region 7.7625-7.7575, p=0.050899

Fig. 14. Highlighted spectra region illustrating variance between subjects with and without Vasoplegia. The selected region of interest is based on feature

selection from the untargeted dataset in SpectraFlow. The provided p-values are derived from ANOVA, indicating the independent significance of the region.
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Impact of Denoising and PCA-Binning - extension
In this supplement, we present additional details pertaining to the experiments described in the main paper, specifically under the section

“Impact of Denoising and PCA-Binning.”

We display the features chosen by the model in each respective configuration. This underscores the significance of denoising and

PCA-binning as indispensable preprocessing steps, enhancing the model’s ability to discern and select pertinent, noise-free features.

Figure 15 demonstrates SpectraFlow’s application on data subjected to denoising followed by PCA-Binning transformation. This

preprocessing sequence is crucial, as it ensures the feature selection process sidesteps noisy artifacts, yielding a selection that is entirely

noise-free.

Fig. 15. The diagram showcases the denoised spectra alongside its PCA-binned transformation. The vertical lines inidcate the ppm regions ranked as top 50 by

SpectraFlow. The colour differentiation, green and orange, represents Vasoplegia positive and negative patients, respectively.
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In contrast, Figure 16 displays the application of SpectraFlow to data that underwent PCA-binning without the denoising step. Observe

how the noisy areas become amplified and compete with genuine metabolic concentrations, resulting in a feature selection dominated

by noisy features.

Fig. 16. The diagram showcases the data spectra that underwent PCA-binning transformation, without denoising. The vertical lines inidcate the ppm regions

ranked as top 50 by SpectraFlow. The colour differentiation, green and orange, represents Vasoplegia positive and negative patients, respectively.

This highlights the efficiency and importance of wavelet denoising for identifying true metabolic features with real clinical significance.

It’s crucial to select the correct wavelet filter, in our case db1, along with an appropriate noise elimination threshold to remove noisy
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features while preserving true metabolic concentrations. These concentrations, though exponentially small compared to other ppm regions,

hold significant meaning. Investigating the impact of different wavelet filters, their sizes, and various filtering thresholds is a promising

future research area for this method.

Moving on, inspect Figure 17. Feature selection without PCA-Binning generally results in noise-free selection, albeit with a few noisy

features. However, the curse of dimensionality, which PCA-Binning addresses, affects the training/evaluation process, leading to lower

performance and thus less reliable feature selection. Lastly, examine the SpectraFlow application without denoising and PCA-binning.

Again, observe how the feature selection focuses entirely on noisy areas of the spectra.

(a) SpectraFlow feature selection without PCA-Binning.

(b) SpectraFlow feature selection without PCA-Binning and Denoising.

Fig. 17. Untargeted datasets (CPMG) spectra. The vertical lines inidcate the ppm regions ranked as top 50 by SpectraFlow. The colour differentiation, green

and orange, represents Vasoplegia positive and negative patients, respectively.
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Estimating the efficacy of the unified-ranking using LOO-RFE
The Leave-One-Out Recursive Feature Elimination (LOO-RFE) process, in the context of evaluating the unified ranking without directly

employing the actual features specified by the unified ranking for each test patient, constitutes a sophisticated methodology that maximises

data utility for feature selection while ensuring an unbiased validation framework. This approach is predicated on the generation of

patient-specific rankings derived from portions of the dataset that exclude the data of the patient under evaluation. By doing so, it adheres

to the principle of unbiased evaluation, as each patient-specific ranking is constructed from data entirely independent of the patient being

tested, thus avoiding any potential bias that could arise from data leakage.

Fig. 18. Heatmap of overlap percentages between patient-specific and unified feature rankings for varying counts of top features. The x-axis represents the

decreasing number of features considered, from 50 to 5 in steps of 5, while the y-axis corresponds to individual patient rankings. Colour intensity reflects the

overlap percentage, with lighter shades indicating a higher degree of commonality.

The justification for this methodology’s effectiveness in estimating the performance of the unified ranking, despite not using the unified

ranking directly for each patient’s evaluation, lies in the aggregate nature of the LOO-RFE process. Each patient-specific ranking is a subset
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reflection of the broader unified ranking, conditioned on the exclusion of the patient’s own data. By evaluating the model’s performance

across all patient-specific rankings and then aggregating these performances, the methodology indirectly assesses the robustness and

relevance of the unified ranking. This aggregated performance metric offers a holistic view of the unified ranking’s efficacy across the entire

dataset, under the premise that a high-performing unified ranking should consistently produce high-performing patient-specific rankings

when the corresponding patient data are excluded.

Furthermore, this process effectively leverages the entire dataset for feature selection, maximising the use of available data while

maintaining the integrity of the evaluation process. The recursive feature elimination aspect, by systematically removing the least impactful

features and reassessing performance, provides a dynamic mechanism to hone in on the most relevant features as defined by the unified

ranking.

The strength of this approach lies in its ability to navigate the challenges posed by limited sample sizes and the high dimensionality

of untargeted metabolomics data. It ensures that every data point contributes to the feature selection process while also serving as an

independent validation point, thereby maximising data utility and maintaining a rigorous standard of unbiased evaluation. This dual

utility not only enhances the reliability of the feature selection process but also validates the clinical relevance of the features identified

by the unified ranking, making it a highly effective and unbiased methodology for evaluating the potential of untargeted metabolomics

in personalised medicine.

Inspect Fig. 18. The graphic was generated through a process where initially, patient-specific feature rankings and a unified ranking

of the top 50 features were computed from a dataset processed with denoising and PCA-Binning. For each patient-specific ranking, feature

overlap percentages with the unified ranking were calculated at intervals, starting with the top 50 features and decreasing by removing

the last 5 features at each step, down to the final 5 features. This iterative reduction allowed for the examination of how the concordance

between patient-specific and unified feature selections evolved as fewer features were considered. The resultant overlap percentages were

organised into a matrix, with rows representing individual patients and columns corresponding to the different feature counts.

The demonstrated overlap in Fig. 18 across all patient-specific rankings underlines the effectiveness of the Leave-One-Out Recursive

Feature Elimination (LOO-RFE) methodology in providing a reliable measure of the unified ranking’s performance. By illustrating how

patient-specific rankings closely mirror the unified ranking, we can infer a strong correlation between the performance of individualised

rankings and the overall efficacy of the unified approach. This concordance signifies that the unified ranking possesses a robust capacity

to identify features of paramount importance across the diverse spectrum of patient data, thereby affirming its clinical relevance.
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Dynamics of Sequential Attention-Guided Feature Selection in MLP Architecture

Sequence Attention
1. Input Features Layer:

• This is the base layer where all the candidate input features (F1, F2, F3, ..., FN) are presented to the model.

2. Sequential Attention Layer:

• Each input feature is connected to a corresponding attention node in this layer.

• The attention nodes apply a trainable attention mechanism to assess the importance of each feature.

• The attention scores influence the feature selection process and are updated based on training feedback.

3. MLP Input Layer:

• The outputs of the attention nodes (which include the attention weights applied to the input features) are passed as inputs to the MLP.

• The MLP’s input layer size is the same as the number of features being considered.

4. MLP Hidden Layer:

• The weighted input features are then processed through the MLP’s hidden layers, which include non-linear activation functions,

batch normalisation, and dropout regularisation.

• The hidden layers enable the model to learn complex patterns and interactions between the features.

5. MLP Output Layer:

• The top-most layer in the MLP produces the final prediction. For classification tasks, this layer typically has a softmax activation

function; for regression tasks, it might have a linear activation.

Training Dynamics and Feature Selection
During training:

1. Attention Weight Calculation:

• The model calculates attention weights for each feature based on their relevance to the output prediction.

• These weights are not fixed; they evolve as the model learns from the data throughout the training epochs.

2. Feature Selection:

• At specific intervals, a subset of features with the highest attention weights is selected.

• This selection is influenced by the training progress, where early in training, the model explores the feature space more broadly,

and later, it exploits the most informative features.

Post-feature Selection Dynamics
Once a feature is selected:

1. Attention Weights Reinitialisation:

• The attention weights are reset with small random values, to prevent the model from becoming too reliant on the currently selected

features and to encourage exploration of other features.

2. Feature Masking:

• The selected features are masked to avoid being re-selected in subsequent rounds, allowing the model to focus on other informative

features.

• This is important for ensuring the diversity of the selected feature set and for preventing the redundancy of features.

3. Intuition Behind Reinitialisation and Masking:

• Reinitialisation and masking help in redistributing the model’s attention to potentially informative features that haven’t been

selected yet.

• It prevents the model from ”fixating” on early selections and helps in balancing exploration and exploitation, which is crucial

in identifying a compact yet informative feature subset.

The described process iterates throughout the training epochs, continuously refining the feature subset and the prediction model for

optimal performance.
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Fig. 19. A stochastic representation of Sequential Attention with MLP for feature selection.

Hyperparameters
The experimentation outlined in the original paper utilised a specific set of hyperparameters to configure the feature selection and learning

process. The hyperparameters listed in Table 7 correspond directly to the argument names as they are defined within the code. These

settings control various aspects of the feature selection architecture as well as the parameters for the MLP evaluator, determining the

behaviour and performance of the model. The descriptions provided alongside each hyperparameter offer insights into their intended effect

on the experimental setup.

Table 7. Hyperparameters for Feature Selection and MLP Evaluator

Hyperparameter Sequential Attention + MLP MLP Evaluator Description

Seed 2024 2024 Random seed for reproducibility.

Data Pretreatments ’uv scaler’ ’uv scaler’ Applies Unite Variance scaling.

Number of Jobs 90 90 Number of jobs to run in parallel.

CV Folds 10 LOO-RFE Cross-validation folds to test.

CV Repetitions 10 N/A Number of cross-validation repetitions.

Epochs 800 400 Number of epochs for the training phase.

Number of Selected Features 50 N/A Number of features to select.

Number of Inputs to Select per Step 1 N/A Number of features to select per interval.

Learning Rate 0.0002 0.0005 Learning rate for the model.

Number of Hidden Layers 1 1 Number of hidden layer.

Number of Hidden Unites 9 9 Number of nodes in the hidden layer

Decay Steps 250 N/A Decay steps for the learning rate.

Decay Rate 0.96 N/A Decay rate for the learning rate.

Alpha 0.01 0.005 Alpha value for L1 regularisation.

Beta N/A 0.0005 Beta value for L2 regularisation.

Enable Batch Normalisation True N/A Whether to enable batch normalisation.

Batch Size 20 N/A Batch size for training and evaluation.
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Data Preprocessing

PCA-binning

Algorithm 1: PCA Dimension Reduction on Bins of Spectroscopic Data (PCA-Binning)

Input : file path← path to dataset file (CSV)

Input : step size←0.005

Input : overlap←0.0025

Input : n components←2

Output: data with labels, ppm feature names dict, variance explained dict

df← ReadData(file path);

pca components dict←{};
ppm feature names dict←{};
variance explained dict←{};

index←0;

start ppm←10;

last column ppm← Min(df.columns);

while start ppm≥last column ppm do

end ppm←start ppm−step size;

bin df←df within start ppm and end ppm;

if bin df.columns≥8 then

bin df scaled← Standardize(bin df);

pca components← ApplyPCA(bin df scaled,n components);

pca components dict[index]←pca components[:,0];

ppm feature names dict[index]←bin df.columns;

variance explained dict[index]← GetVarianceExplained(pca components);

index←index+1;

start ppm←end ppm+overlap;

end

else

Print(”Not enough ppm values within the segment, merging with the next range”);

start ppm←start ppm−step size;

end

end

data with labels← Concatenate(columns,pca components dict);

return data with labels,ppm feature names dict,variance explained dict;
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Wavelet Thresholding for Denoising NMR Data
NMR spectra often encounter noise from various sources, potentially masking vital chemical shift information. To tackle this, we applied

wavelet thresholding, an adept signal processing technique that can distinguish genuine signal features from noise.

Initially, the NMR signal undergoes decomposition into a set of wavelet coefficients using the Discrete Wavelet Transform (DWT):

s(t)→c(j,k) (18)

Here, s(t) symbolises the NMR signal, and c(j,k) denotes the wavelet coefficients at scale j and position k. In our study, the “db1”

wavelet was chosen owing to its ability to accurately detect sharp peaks and nuanced details typical in NMR data.

Having the wavelet coefficients, the task then is to identify which of these likely represent noise. To achieve this, we use the Mean

Absolute Deviation (MAD) to scale wavelet coefficients to derive a solid estimate of the noise standard deviation, σ:

σ=
1

0.6745
×MAD(cfine) (19)

The component 1/0.6745 in Equation 18 serves as a normalisation factor, estimating the standard deviation from MAD when confronted

with Gaussian white noise.

With the value of σ, a universal threshold uthresh is calculated as:

uthresh=σ×
√

2×ln(n) (20)

Here, n represents the signal length.

Each wavelet coefficient, c(j,k), is then subjected to a process known as soft thresholding:

c
′
(j,k)=

sign(c(j,k))×(|c(j,k)|−uthresh), if |c(j,k)|>uthresh

0, otherwise
(21)

Equation 21 elucidates that coefficients with relatively small magnitudes, which are likely indicative of noise, are suppressed. In contrast,

significant coefficients, which correspond to genuine features, are not only retained but also undergo a reduction in magnitude.

Post-thresholding, the wavelet coefficients now depict a denoised version of the original NMR signal. By utilising the Inverse Discrete

Wavelet Transform (IDWT), the denoised NMR signal s′(t) is reconstructed using the thresholded coefficients c′(j,k).

In summary, wavelet thresholding provides an advanced method for denoising NMR spectra. It accentuates the genuine chemical shift

peaks while simultaneously minimising baseline noise. This strategy has significantly improved the clarity of our spectral analysis, paving

the way for precise ppm region selections.

Influence of Wavelet Filter Size on Spectral PPM Region Selection
The size of the wavelet filter, represented as db1, db2, ... db38, significantly influences the transformation of datasets, consequently

impacting feature selection. A notable correlation exists between the filter size and the noise introduced into the reconstructed denoised

spectra. Preliminary observations reveal that as the filter size increases, the denoised spectra, particularly in peak regions, remain more

reminiscent of the spectra prior to denoising. Conversely, a rise in filter size leads to the retention of greater fluctuations in noisy regions.

This can detrimentally impact feature selection since these noisy areas may be erroneously interpreted as genuine features.

Refer to Figures 20 and 21 to visually comprehend the influence of wavelet filter sizes on the denoised spectra and the consequential

effect on feature selection.

In our analysis, filters in the larger than db8 marginally enhanced prediction accuracy compared to db1. However, employing larger

filters occasionally resulted in the incorrect selection of noisy ppm areas for top-ranked ppm regions. Given our primary aim to identify

pertinent ppm regions, we favoured a db1 filter that maximally eliminated noise, even if this meant a slight compromise in accuracy.

Importantly, the optimal filter choice remains contingent on the specific objective and dataset characteristics. Thus, no universal “correct”

choice exists; the decision hinges on the specific application and dataset properties.

It is pertinent to note that our findings are preliminary. As such, they should be interpreted with caution, and additional experimentation

is warranted to robustly validate our observations.
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(a) Wavelet db1 Denoised Untargeted NMR Spectra. The range between 3.95 to 3.79 ppm is enlarged, showcasing data transformation in greater

detail.

(b) PCA-Bin Transformed Representation of the spectra above.

Fig. 20. The diagram showcases the denoised spectra alongside its PCA-binned transformation. The vertical lines inidcate the ppm regions ranked as top 50 by

SpectraFlow. The colour differentiation, green and orange, represents Vasoplegia positive and negative patients, respectively.
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(a) Wavelet db20 Denoised Untargeted NMR Spectra. The range between 3.95 to 3.79 ppm is enlarged, showcasing data transformation in greater

detail.

(b) PCA-Bin Transformed Representation of the spectra above.

Fig. 21. The diagram showcases the denoised spectra alongside its PCA-binned transformation. The vertical lines inidcate the ppm regions ranked as top 50

by SpectraFlow. The colour differentiation, green and orange, represents Vasoplegia positive and negative patients, respectively. Red crosses underscore noisy

features that were included in the top selection.
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